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1 Introduction 
 

The goal of the PLEASED project is to lay the foundation of a system that can use 

electrophysiological signals from plants to identify the environmental constituents they are in. 

Toward this goal, the PLEASED approach is first to explore the possibility of classifying 

external stimuli using the electrophysiological signal from a single plant species and then 

combine the response of different plant species to more accurately identify the external stimuli. 

The latter part stems from the fact that not all the species may have same sensitivity to an 

arbitrary external stimulus and the may show individualized response to a stimulus. The idea of 

combining the responses from multiple plat species is to exploit this individualized response to 

identify the external stimulus more accurately. This document presents an overview of the 

findings as a result of the analysis carried out on four plant species (cabbage, rosemary, sage, 

mint) to determine their discriminatory abilities when two different types of stimuli (acid and 

salt) are applied to them. The experimental protocol, signal categories, analysis methods adopted 

and the results obtained are listed in the following sections. 

The primary motivation was to determine the behavior of a group of plants (cabbage, rosemary, 

sage and mint) to external stimuli and to recognize the stimulus applied. In view of this, the 

research question addressed in this exploration can be summarised as: 

 

1. Can the background (before the application of stimulus) and post-stimulus (after the 

application of stimulus) signals for each plant species be distinguished? 

2. Can the post-stimulus signals for different stimuli (acid, salt) for each plant species be 

distinguished? 

2 Experimental protocol 
 

The details of the experiments performed on four plant species is presented below:  

 

Plant types: Cabbage, Rosemery, Sage, Mint 

 

Electrodes: 2 (1 reference, 1 on the plant) 

 

Stimulus: Acid (H2So4) and Salt (NaCl) 

 

Duration: Day1 – Acid stimulus on 4 plants, Salt stimulus on 4 plants, for three hours each. 

Day2 – Acid stimulus on 4 plants, Salt stimulus on 4 plants, for three hours each. Four new 

plants were used for experimental set up. 

 

Signal categories: The signals from each plant prior to the application of the stimuli were 

recorded, viz. background and the signals after the application of the stimuli, viz. post-stimulus 

were also recorded on both days of the experiments. The signals for each of the four plant 

categories are: 
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1. Background for different experimental setup 

 

 BGAcid1_cabbage, BGSalt1_cabbage, BGAcid2_cabbage, BGSalt2_cabbage 

 BGAcid1_rosemery, BGSalt1_rosemery, BGAcid2_rosemery, BGSalt2_rosemery 

 BGAcid1_sage, BGSalt1_sage, BGAcid2_sage, BGSalt2_sage 

 BGAcid1_mint, BGSalt1_mint, BGAcid2_mint, BGSalt2_mint 

 

2. Post-stimulus for different experimental setup 

 

 PSAcid1_cabbage, PSSalt1_cabbage, PSAcid2_cabbage, PSSalt2_cabbage 

 PSAcid1_rosemery, PSSalt1_rosemery, PSAcid2_rosemery, PSSalt2_rosemery 

 PSAcid1_sage, PSSalt1_sage, PSAcid2_sage, PSSalt2_sage 

 PSAcid1_mint, PSSalt1_mint, PSAcid2_mint, PSSalt2_mint 

3 Approach 
 

The approach followed to solve the above mentioned research problems can be highlighted as: 

 

1. Signal pre-processing 

 

2. Feature extraction – time domain, frequency domain and time-frequency domain features 

 

3. Statistical tests – Wilcoxon ranksum test and ANOVA analysis to find the most 

discriminant features between background signals and post-stimulus signals and also 

between the two stimuli (acid, salt). 

 

4. Pattern recognition – classification and clustering to differentiate between both categories 

of post-stimulus signals (acid/salt) for each plant species.  

 

3.1 Signal pre-processing 

 

All the Background and post-stimulus signals were pre-processed by using a 6th order, 

Chebyshev type II filter, which provided the best optimization of the cost function using a cut-off 

frequency of 0.77Hz and stop-band ripple of 100. This filter parameter was used to on the raw 

signals. Once filtered the signals were divided into non-overlapping blocks of 1024 samples. 

. 

3.2 Feature extraction 

 

Table 1 lists the details of the features and their description. The following features were 

extracted from each window of the filtered signals as a result of time domain and time-frequency 

domain analysis. 
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No Features Description 

Time Domain analysis 

1 Mean Average of the signal 

2 Std Standard deviation of samples 

3 Kurtosis measure of the ‘peakedness’ of a signal 

4 Skewness measure of the symmetry of the signal 

5 Signal Energy Energy content of the signal 

Frequency Domain analysis 

6 PSD_max Maximum amplitude of the power spectral density (fft) 

7 PSD_min Minimum amplitude of the power spectral density (fft) 

8 FFT_power Energy content of the fft signal 

Time-Frequency analysis 

9 Energy_haar_l1 
 

Energy content of the haar level1 DWT coefficient 

10 Energy_haar_l2 Energy content of the haar level2 DWT coefficient 

11 Energy_haar_l3 Energy content of the haar level3 DWT coefficient 

12 ZCR_haar_l1 Zero crossing rate of the haar level1 DWT coefficient 

13 ZCR_haar_l2 Zero crossing rate of the haar level2 DWT coefficient 

14 ZCR_haar_l3 Zero crossing rate of the haar level3 DWT coefficient 

15 Energy_db3_l1 Energy content of the db3 level1 DWT coefficient 

16 Energy_db3_l2 Energy content of the db3 level2 DWT coefficient 

17 Energy_db3_l3 Energy content of the db3 level3 DWT coefficient 

18 ZCR_db3_l1 Zero crossing rate of the db3 level1 DWT coefficient 

19 ZCR_db3_l2 Zero crossing rate of the db3 level2 DWT coefficient 

20 ZCR_db3_l3 Zero crossing rate of the db3 level3 DWT coefficient 

21 Energy_coif3_l1 Energy content of the coif3 level1 DWT coefficient 

22 Energy_coif3_l2 Energy content of the coif3 level2 DWT coefficient 

23 Energy_coif3_l3 Energy content of the coif3 level3 DWT coefficient 

24 ZCR_coif3_l1 Zero crossing rate of the coif3 level1 DWT coefficient 

25 ZCR_coif3_l2 Zero crossing rate of the coif3 level2 DWT coefficient 

26 ZCR_coif3_l3 Zero crossing rate of the coif3 level3 DWT coefficient 

27 Contrast_cgau3 
Image generated by CWT using complex Gaussian - measure of local level variations which takes 

high values for image of high contrast 

28 Correlation_cgau3 
Image generated by CWT using complex Gaussian - measure of correlation between pixels in two 
different directions 

29 Energy_cgau3 Image generated by CWT using complex Gaussian - Measure of signal energy 

30 Homogeneity_cgau3 
Image generated by CWT using complex Gaussian - measure that takes high values for low-contrast 

images 

31 Entropy_cgau3 
Image generated by CWT using complex Gaussian - measure of randomness and takes low values for 
smooth images 

32 Contrast_cmor 
Image generated by CWT using complex Morlet - measure of local level variations which takes high 

values for image of high contrast 

33 Correlation_cmor 
Image generated by CWT using complex Morlet - measure of correlation between pixels in two 
different directions 

34 Energy_cmor Image generated by CWT using complex Gaussian - Measure of signal energy 

35 Homogeneity_cmor 
Image generated by CWT using complex Morlet - measure that takes high values for low-contrast 

images 

36 Entropy_cmor 
Image generated by CWT using complex Morlet - Measure of randomness and takes low values for 

smooth images 

Table 1: List of features extracted from pre-processed Background and post-stimulus signals. 

 

3.3 Discrimination between Background and Post-stimulus signals 

 

This exploration enlists the steps undertaken to fulfil the first research objective to distinguish 

between background and post-stimulus signals for each plant species. A statistical approach 

based on ANOVA and Wilcoxon ranksum test was performed to determine the distinguishing 

features. Analysis of variance (ANOVA) is a collection of statistical models used in order to 

analyze the differences between group means and their associated procedures (such as variation 

among and between groups). It provides a statistical test of whether or not the means of several 

http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Statistical_test
http://en.wikipedia.org/wiki/Mean
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groups are equal, and therefore generalizes the commonly used t-test to more than two groups. In 

general, the purpose of analysis of variance (ANOVA) is to test for significant differences 

between means.  

 

The Wilcoxon ranksum test is a non-parametric statistical hypothesis test used to compare two 

independent random samples taken from two populations whose distributions are identical. The 

Wilcoxon rankusm does not require that populations have normal distribution which is the 

primary difference from the paired t-test. The key steps involved in this exploration are: 

 

Step1: The null hypothesis is that there is no difference between the background signals of a 

particular species collected during the four experiments. This is because prior to the application 

of the stimulus (acid or salt), the background signal of each plant species used for different 

experimental protocols should have the same morphology. 

 

Step2: Hence, all the 36 features extracted from each of the 4 Background signals undergo the 

ANOVA test to determine the features which prove the null hypothesis to be false. 

 

Step3: The features which prove the null hypothesis to be true (the one’s which find no 

difference between the background signals of the 4 experimental conditions) are grouped 

together and are used to determine those features which produce the required discrimination 

between the Background and the post-stimulus (acid, salt) signals. This can be represented as: 

 
Group1: [BGAcid1_cabbage, BGSalt1_cabbage, BGAcid2_cabbage, BGSalt2_cabbage] - [PSAcid1_cabbage, PSAcid2_cabbage] 

Group2: [BGAcid1_cabbage, BGSalt1_cabbage, BGAcid2_cabbage, BGSalt2_cabbage] - [PSSalt1_cabbage, PSSalt2_cabbage] 

 

Step4: The discrimination between the background and the stimulus groups (acid and salt) is 

determined through the Wilcoxon ranksum hypothesis test and the commonly used t-test. The 

null hypothesis is that there is a difference between the features of both the groups (Group1, 

Group2). 

 

Step5: The common intersecting features which produce the discrimination in Group1 and 

Group2 are selected and a histogram plot of each of the discriminating features is plotted to 

observe the difference between the distributions. 

 

Step6: Steps1 – 5 are repeated for each of the four plant species. 

 

3.4 Results 

 

The discriminating features between the background and post-stimuli signals for each species (as 

a result of Step 5) are listed below: 

 

 

 

http://en.wikipedia.org/wiki/Student%27s_t-test#Independent_two-sample_t-test
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Cabbage Rosemery Sage Mint 

Energy_cmor Homogeneity_cmor Homogeneity_cmor Homogeneity_cmor 

Homogeneity_cmor Energy_cmor Energy_cmor Energy_cmor 
Energy_cgau3 Entropy_cmor Entropy_cgau3 Contrast_cgau3 

Entropy_cgau3 Energy_cgau3 Entropy_cmor Entropy_cgau3 

Entropy_cmor Entropy_cgau3 Contrast_cmor Energy_cgau3 
Correlation_cgau3 Contrast_cmor  Homogeneity_cgau3 

Contrast_cgau3 Energy_coif3_l1  Entropy_cmor 

Energy_db3_l1 Energy_db3_l1  Correlation_cgau3 
Std Energy_haar_l1  Mean 

Energy_haar_l1 Energy  Contrast_cmor 

Energy FFT_power  ZCR_coif3_l3 
FFT_power Std  Energy_db3_l3 

Energy_coif3_l2    

Energy_coif3_l1    
Energy_haar_l2    

Energy_db3_l3    

Energy_haar_l3    
Energy_coif3_l3    

Mean    

Contrast_cmor    

Table 2: List of features determined through Wilcoxon ranksum and Ttest to distinguish between background and 

post-stimulus signals for each plant species. 

 

The features pertaining to each plant species as listed in Table 2, are further plotted in a 

histogram to determine the most distinguishing features. The histogram plot for cabbage is 

shown in Figure 1: 

 

 
Figure 1: Histogram plot for Cabbage, showing discrimination between background (‘blue’) and post-stimulus 

signals (‘red’) for each of the 20 features as determined in Table 1. 

 

Therefore, from Figure 1, it is clear that although the statistical tests help us to infer a list of 20 

features (cf. Table 1) that discriminate between the background and post-stimuli signals, but the 
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histogram plot of the pre-processed signals show that the features - Energy_cmor, 

Homogeneity_cmor, Energy_cgau3, Entropy_cgau3, Entropy_cmor and Correlation_cgau3 are 

the most discriminative. 

 

Similarly, as seen from Figure 2, for rosemery, the features - Homogeneity_cmor, Energy_cmor, 

Entropy_cmor, Energy_cgau3, Entropy_cgau3, turn out to be the most discriminating features. 

 

 
Figure 2: Histogram plot for Rosemery, showing discrimination between background (‘blue’) and post-stimulus 

signals (‘red’) for each of the 12 features as determined in Table 1. 

 

For sage (cf. Figure 3), the features - Homogeneity_cmor, Energy_cmor, Entropy_cgau3, 

Entropy_cmor, reflect a discrimination between the background and post-stimulus signals. 
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Figure 3: Histogram plot for Sage, showing discrimination between background (‘blue’) and post-stimulus signals 

(‘red’) for each of the 4 features as determined in Table 1. 

 

For mint the seven discriminating features are - Homogeneity_cmor, Energy_cmor, 

Contrast_cgau3, Entropy_cgau3, Energy_cgau3, Homogeneity_cgau3, Entropy_cmor which is 

further evident from Figure 4. 

 

 
Figure 4: Histogram plot for Mint, showing discrimination between background (‘blue’) and post-stimulus signals 

(‘red’) for each of the 12 features as determined in Table 1. 
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Therefore, the final list of features which produce considerable discrimination between the 

background and post-stimulus signals for each plant species have been listed in Table 2. 

 
Cabbage Rosemery Sage Mint 

Energy_cmor Homogeneity_cmor Homogeneity_cmor Homogeneity_cmor 

Homogeneity_cmor Energy_cmor Energy_cmor Energy_cmor 
Energy_cgau3 Entropy_cmor Entropy_cgau3 Contrast_cgau3 

Entropy_cgau3 Energy_cgau3 Entropy_cmor Entropy_cgau3 

Entropy_cmor Entropy_cgau3  Energy_cgau3 
Correlation_cgau3   Homogeneity_cgau3 

   Entropy_cmor 

Table 2: List of discriminating features as determined from the histogram plot. 

 

3.5 Discrimination between the post-stimulus signals for acid and salt stimuli  

 

Having determined the features which produce discrimination between the background and post-

stimulus signals (generated as a result of acid and salt stimuli), in this section the methodology 

adopted to discriminate between the two post-stimulus signals for each plant species has been 

described. This exploration also helps to ascertain the behaviour of each of the four plant species 

in discriminating between the two different stimuli. 

 

Step1: The null hypothesis is that there is no difference in signal characteristics between the post-

stimulus signals using acid between the two experiments performed over two days for each 

category of plants, i.e. [PSAcid1_cabbage, PSAcid2_cabbage]. This hypothesis is tested using Wilcoxon 

ranksum test and a list of features are selected which satisfy the hypothesis.  

 

Step2: Similarly there is no difference between the post-stimulus signals generated as a result of 

salt stimulus between the two experiments performed over different days for each category of 

plants, i.e. [PSSalt1_cabbage, PSSalt2_cabbage]. A list of features having no difference between the two 

post-stimulus salt groups is selected. 

 

Step3: The features selected in Step1 and Step2 are used to determine the most discriminating 

features between the post-stimulus signals for acid and salt. A similar kind of null hypothesis 

using Wilcoxon ranksum test is performed to determine the discriminating feature sets. 

 

Step4: Steps 1 – 3 are repeated for each of the 4 plant species. 

 

3.6 Results  

 

The discriminating features between the post-stimuli signals for acid and salt for each plant 

species are listed below: 
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Cabbage Rosemery Sage Mint 

ZCR_db3_l2   Energy_db3_l2 

ZCR_coif3_l2   Energy_coif3_l2 

   Energy_haar_l2 

   Skewness 

Table 3: List of features determined through Wilcoxon ranksum to distinguish between the post-stimulus signals for 

acid and salt for each plant species. 

 

Therefore the features ZCR_db3_l2 and ZCR_coif3_l2 computed from the post-stimulus signals 

of the cabbage plant are supposed to be responsive towards discriminating between acid and salt. 

Similarly, the discriminating features for the mint plant are listed in Table 3. However, it is 

interesting to note that the plant species rosemery and sage did not respond to the differences in 

the applied stimuli (acid and salt) using the investigated features. 

 

A further analysis from the histogram plot reveals that there is hardly any separation between the 

two categories of post-stimulus signals – acid and salt. Here for the plot, features other than the 

one’s mentioned in Table 3 were also considered. Figures 5 – 8 show the histogram plots for 

cabbage, rosemery, sage and mint respectively.  

 

 

Figure 5: Histogram plot for features extracted from post-stimulus signals generated as a result of acid (‘red’) and 

salt (‘blue’) stimulus for the Cabbage plant. 
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Figure 6: Histogram plot for features extracted from post-stimulus signals generated as a result of acid (‘red’) and 

salt (‘blue’) stimulus for the Rosemery plant. 

 

 

Figure 7: Histogram plot for features extracted from post-stimulus signals generated as a result of acid (‘red’) and 

salt (‘blue’) stimulus for the Sage plant. 
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Figure 8: Histogram plot for features extracted from post-stimulus signals generated as a result of acid (‘red’) and 

salt (‘blue’) stimulus for the Mint plant. 
 

4 Methodology based on pattern recognition 
 

It is evident from the plots (Figures 5 – 8) that there is minimal separation between the post-

stimulus signals for acid and salt stimuli for each of the plant species. Therefore, a further 

exploration to classify the signals based on pattern recognition based approach was undertaken. 

There were two approaches that were undertaken – 1) use of supervised learning algorithms to 

classify the post-stimulus signals and 2) use of k-means clustering and minimum distance 

computation. These are described in detail in the following sections. The basic approach of this 

methodology has been depicted in Figure 9.  

 

Stimulus

(Acid/Salt)

Stimulus

(Acid/Salt)
Training 

Data

Training 

Data
FeaturesFeatures

Modelling (Classification/

Clustering)

Modelling (Classification/

Clustering)

Trained modelTrained model
Prospective Evaluation

Retrospective modelling

Testing 

Data

Testing 

Data
FeaturesFeatures

Selected features

 
Figure 9: Retrospective modelling and prospective evaluation to classify post-stimulus signals for acid and salt for 

each plant species. 
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In this exploration the features pertaining to the second order statistics, generated as a result of 

continuous wavelet transform (CWT) were not considered because of reduction in the sample 

length. Therefore, only 26 features were considered for this analysis which is listed in Table 4. 

 
No Features 

1 Mean 

2 Std 

3 Kurtosis 

4 Skewness 

5 Signal Energy 

6 PSD_max 

7 PSD_min 

8 FFT_power 

9 Energy_haar_l1 
 

10 Energy_haar_l2 

11 Energy_haar_l3 

12 ZCR_haar_l1 

13 ZCR_haar_l2 

14 ZCR_haar_l3 

15 Energy_db3_l1 

16 Energy_db3_l2 

17 Energy_db3_l3 

18 ZCR_db3_l1 

19 ZCR_db3_l2 

20 ZCR_db3_l3 

21 Energy_coif3_l1 

22 Energy_coif3_l2 

23 Energy_coif3_l3 

24 ZCR_coif3_l1 

25 ZCR_coif3_l2 

26 ZCR_coif3_l3 

Table 4: List of extracted features considered for classification and clustering based analysis 

4.1 Classification based on decision boundary  

 

Supervised classification techniques involve two phases – training a model with a given set of 

observations and evaluating the trained model with new set of observations (testing). Here, the 

post-stimulus data for each plant species is used to develop a model retrospectively. The trained 

model is cross-validated in association with three supervised learning algorithms independently – 

linear discriminant analysis (LDA), quadratic discriminant analysis (QDA) and support vector 

machines (SVM) [1]. The trained model (classifier) is then prospectively evaluated on new set of 

data in association with the best performing learning algorithm to classify the acid and salt 

stimuli for each individual species. 

 

Taking an example, considering cabbage,  

 

[PSAcid1_cabbage, PSSalt1_cabbage] are used for retrospective modelling,  

 

the developed model was used for prospectively evaluating on [PSAcid2_cabbage, PSSalt2_cabbage]. 

 

In view of this, the procedure is divided in to three parts – feature selection, retrospective 

modelling and prospective evaluation, each of which is discussed in the following sections. 
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4.1.1 Feature selection 

 

Feature selection helps to select the optimal number of features thereby reducing the 

computational load and helps in achieving the best possible classification accuracy. The 

extracted features were normalised and the Wrapper approach was followed using the sequential 

forward selection (sfs) searching technique. It selects various feature vector combinations to test 

for the minimal classification error probability and is computationally simple. Here, the selection 

of the optimal number of features depends strongly on the employed classification algorithm.  

 

The sfs technique can be explained with a working example by considering a feature vector 

comprising of four different features [X1, X2, X3, X4]. First, the best ranked feature is computed, 

say X2, and the classification performance is evaluated with X2. Secondly, all two-dimensional 

feature vector combinations with X2 are computed: [X1, X2], [X2, X3], [X2, X4] and the 

classification performance for each of the combinations is evaluated. Thirdly, all three-

dimensional feature vector combination with X2 are computed: [X1, X2, X3], [X1, X2, X4] and the 

classification performance is evaluated with both the combinations. Finally, the features forming 

the best feature vector combination are selected [2].  

 

The number of features selected in each of the cases is highlighted in the corresponding results.  
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4.1.2 Retrospective modelling 

 

The recognition model was developed retrospectively using the data collected on Day 1, in 

association with the learning algorithms LDA, QDA and SVM. The model is verified through 10 

runs of 10-fold cross-validation whereby out of the total N available data samples, 9N/10 data 

samples are used to train the classifier whilst the remaining sample size (N/10) is used to test the 

classifier. This is repeated such that each individual data segment takes the role of the classifier 

test data. The true error could then be calculated as the mean of the error over all 10 runs 

performed [3]. 

 

Therefore for retrospective modelling the following data are considered for each of the plant 

species: 

 PSAcid1_cabbage, PSSalt1_cabbage 

 PSAcid1_rosemery, PSSalt1_rosemery 

 PSAcid1_sage, PSSalt1_sage 

 PSAcid1_mint, PSSalt1_mint 

 

4.1.3 Results for the retrospective modelling  

 

The classification results for the cross-validation stage for each of the three learning algorithms - 

LDA, QDA and SVM are presented in Table 5. 
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Classifier 
Plant 

Species 
Acid (%) Salt (%) Features 

LDA 

Cabbage 
97.1 

 

98.6 

 
Std, Energy_haar_l1, Energy_db3_l2, ZCR_coif3_l1 

Rosemery 
100 

 

85.8 

 
Kurtosis, PSD_min, Energy_db3_l3 

Sage 
74.3 

 

61.4 

 
ZCR_db3_l1, ZCR_coif3_l3 

Mint 
82.8 

 

75.8 

 
Mean, PSD_max, ZCR_haar_l3, ZCR_db3_l3 

QDA 

Cabbage 
98.6 

 

97.1 

 
Energy_haar_l1 

Rosemery 
95.8 

 

97.1 

 
Mean, Kurtosis, Energy_db3_l3 

Sage 
98.6 

 

57.1 

 
Mean, Energy_db3_l2, ZCR_db3_l1, ZCR_coif3_l3 

Mint 
92.9 

 

74.1 

 

Mean, PSD_min, ZCR_haar_l1, ZCR_db3_l1, 

ZCR_db3_l2, ZCR_db3_l3, ZCR_coif3_l3 

SVM 

Cabbage 
54.3 

 

68.1 

 
ZCR_db3_l2, ZCR_coif3_l1, ZCR_coif3_l2 

Rosemery 
65.7 

 

54.1 

 
ZCR_db3_l3 

Sage 
77.5 

 

51.4 

 
ZCR_coif3_l3 

Mint 
84.3 

 

74.5 

 
ZCR_haar_l3, ZCR_db3_l2, ZCR_db3_l3 

Table 5: Cross-validation of the retrospective model for each plant species. 
 

4.1.4 Prospective evaluation 

 

The model was prospectively evaluated on the data from Day 2 for each species as follows: 

 

 PSAcid2_cabbage, PSSalt2_cabbage 

 PSAcid2_rosemery, PSSalt2_rosemery 

 PSAcid2_sage, PSSalt2_sage 

 PSAcid2_mint, PSSalt2_mint 

 

The results for prospective exploration are presented in Table 6. The table lists the sensitivity for 

acid and salt recognition for each of the four species and for the three learning algorithms. The 

table also lists the features that are selected as a result of feature selection. 
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Classifier 
Plant 

Species 
Acid (%) Salt (%) Features 

LDA 

Cabbage 
37.1 

 

100 

 

Std, Energy_haar_l1, Energy_db3_l2, 

ZCR_coif3_l1 

Rosemery 
10 

 

65.7 

 
Kurtosis, PSD_min, Energy_db3_l3 

Sage 
74.3 

 

27.2 

 
ZCR_db3_l1, ZCR_coif3_l3 

Mint 
67.1 

 

18.5 

 
Mean, PSD_max, ZCR_haar_l3, ZCR_db3_l3 

QDA 

Cabbage 
50 

 

100 

 
Energy_haar_l1 

Rosemery 
7.1 

 

80 

 
Mean, Kurtosis, Energy_db3_l3 

Sage 24.3 
20 

 
Mean, Energy_db3_l2, ZCR_db3_l1, ZCR_coif3_l3 

Mint 
71.3 

 

24.3 

 

Mean, PSD_min, ZCR_haar_l1, ZCR_db3_l1, 

ZCR_db3_l2, ZCR_db3_l3, ZCR_coif3_l3 

SVM 

Cabbage 
47.3 

 

62.9 

 
ZCR_db3_l2, ZCR_coif3_l1, ZCR_coif3_l2 

Rosemery 
40 

 

51.2 

 
ZCR_db3_l3 

Sage 
78.5 

 

15.8 

 
ZCR_coif3_l3 

Mint 
70 

 

18.6 

 
ZCR_haar_l3, ZCR_db3_l2, ZCR_db3_l3 

Table 6: Prospective evaluation for each plant species for the three learning algorithms. 
 

The results clearly illustrate that for none of the plant species, across all the algorithms, both acid 

and salt are classified up to a satisfactory level (> 60%). Although the model was successful in 

distinguishing between acid and salt signals in the retrospective phase, it fails to generalize for 

the prospective study on the data that it has not seen during modelling. This is a typical problem 

with many classifiers, where they perform well on the training dataset but perform poorly on the 

testing dataset (data on which it has not been trained). Hence, it can be inferred that the learnt 

model or the classifier is poorly generalized because it cannot perform well on new set of data. 

 

One of the reasons for this failure could also be the less number of data points. The employed 

classification algorithms here namely LDA, QDA and SVM primarily work based on a decision 

boundary based system. Data points lying on either side of the decision boundary are classified 

accordingly to the competing classes. LDA and QDA are also affected by outlier data points 

which might lead to a complicated decision boundary which caters well for the variations of the 

training set but fails to generalize for the data points not used for the modelling (testing set). 

Although SVM caters to outliers by concentrating only on the support vectors that lie proximal 

to the decision boundary rather than all the data points, none of these methods can effectively 

model a sparse data distribution in the respective feature space. 
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4.1.5 Further exploration using classification 

 

Hence, for further evaluation, experimental data was collected from the same four plant species 

using the same experimental protocol as earlier. Experiments were conducted on two consecutive 

days with acid and salt stimuli to new set of plants for each experimental session. Hence, this 

leads to a new data structure in addition to the one’s mentioned before: 

 

 PSAcid3_cabbage, PSSalt3_cabbage, PSAcid4_cabbage, PSSalt4_cabbage 

 PSAcid3_rosemery, PSSalt3_rosemery, PSAcid4_rosemery, PSSalt4_rosemery 

 PSAcid3_sage, PSSalt3_sage, PSAcid4_sage, PSSalt4_sage 

 PSAcid3_mint, PSSalt3_mint, PSAcid4_mint, PSSalt4_mint 

 

Here, only the post-stimulus signals have been mentioned. Based on this dataset two new 

explorations were made. These explorations have been described with the cabbage plant as an 

illustrative example. The same methodology is followed for the other three plant species. 

 

1). Forming a retrospective model (training) based on: 

 

[PSAcid1_cabbage, PSSalt1_cabbage, PSAcid2_cabbage, PSSalt2_cabbage, PSAcid3_cabbage, PSSalt3_cabbage]  

 

Evaluating the model (testing) on: 

 

[PSAcid4_cabbage, PSSalt4_cabbage]. 
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4.1.6 Results 

 

The results for the prospective evaluation for each plant species are presented in Table 7: 

 

Classifier 
Plant 

Species 
Acid (%) Salt (%) Features 

LDA 

Cabbage 
100 

 

34.8 

 

PSD_max, Energy_db3_l3, ZCR_db3_l1, ZCR_db3_l2, 

Energy_coif3_l3, 

Rosemery 
100 

 

55.1 

 

ZCR_haar_l2, ZCR_db3_l1, ZCR_db3_l3, 

ZCR_coif3_l3 

Sage 
95.7 

 

2.9 

 
Mean, Skewness, Energy_haar_l3 

Mint 
92.75 

 

14.49 

 

Mean, Std, Energy_haar_l1, Energy_haar_l2, 

Energy_db3_l1, Energy_db3_l2, ZCR_db3_l3,  

Energy_coif3_l1, Energy_coif3_l3, ZCR_coif3_l3 

SVM 

Cabbage 
92.8 

 

47.8 

 
Energy_db3_l1, ZCR_db3_l1, ZCR_coif3_l2 

Rosemery 
100 

 

33.3 

 
ZCR_db3_l1, ZCR_db3_l3, ZCR_coif3_l1 

Sage 
91.3 

 

0 

 
Std 

Mint 
88.4 

 

27.5 

 

Energy_haar_l1, ZCR_haar_l1, ZCR_db3_l3, 

ZCR_coif3_l3 

Table 7: Prospective evaluation for each plant species for the learning algorithms LDA, SVM with data from Day 1, 

day 2 and Day 3 used for forming the model and evaluating the model on Day 4 data. 
 

Table 7 indicates that acid detection improves but salt detection is poor and inconsistent across 

plant species and learning algorithms. In this exploration, the QDA algorithm was not used since 

its results (cf. Table 5 and 6) were on similar lines to LDA. In the following section a clustering 

based approach has been discussed which was adopted in view of its ability to cater to the 

underlying data distribution and search for a unique feature space where the data can be 

represented in compact clusters having a minimal within-class variance. 

 

4.2 Clustering based exploration 

 

Having explored the classification algorithms, it is imperative to explore a different algorithmic 

formulation that can classify acid and salt stimuli for each plant species. In this exploration, a k-

means clustering based methodology is used to form compact clusters in a multi-dimensional 

feature space representing the training data. The test data is associated with each respective 

cluster based on a Euclidean or Mahalanobis distance based minimum distance classifier. A 

major advantage of the k-means algorithm is its computational simplicity making it an attractive 

choice for a wide variety of applications [2]. It is a well-perceived fact in the research 

community that cluster analysis is primarily used for unsupervised learning where the class 

labels for the training data are not available. However, the k-means algorithm can also be used 

for supervised learning where the class labels of the training data are known a priori. In this 

proposed methodology, the class labels for the training data pertaining to the stimulus signals are 
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known. This helps to have a definitive estimate of the underlying cluster structure to be formed 

on the data (three clusters), thereby facilitating a faster convergence during cluster formation for 

reduced time complexity [1,4]. 

 

The basic philosophy of the methodology has been illustrated in Figure 10, where two clusters 

Acid and Salt are formed on the training dataset corresponding to the post-stimulus data of Day 

1 and Day 2 grouped together, in a 2-dimensional feature space (Feature 1 (f1) and Feature 2 

(f2)). The distance of the test vector Test from each of the two cluster centroids are represented 

by the distances dAcid, dSalt. These two distance measures are compared to estimate the proximity 

of the Test dataset to each cluster and assigned to the nearest one. This methodology can be 

further scaled up by forming more clusters corresponding to new categories of stimulus and 

associating a new dataset (corresponding to a test dataset) to the proximal cluster. The formation 

of unique clusters corresponding to each type of stimulus can be achieved by selecting the 

optimum number of features which help to discriminate stimulus patterns in the respective 

feature space. 

 

Feature 1 (f1)

AcidAcid

SaltSalt

TestTest

F
e

a
tu

re
 2

 (
f 2

)

dAcid

dSalt

min {dA, dB} ?

The data that defines 
these clusters represents 
the training phase

 
Figure 10: Illustration of the clustering and minimum distance classifier based methodology. 

 

The process proceeds with the selection of the optimum features which helps in forming a 

feature space where compact clusters are formed. This process is explained in further details. 

 

4.2.1 Feature selection 

 

The extracted features are linearly normalized and the best features for each plant species are 

selected by using the low-complexity class-separability measure based on scatter matrices which 

ranks the 26 features for each plant-stimulus combination [2]. The scatter matrices quantify the 

scatter of feature vectors in the feature space. The rank of each individual feature for a multiple-

class scenario is determined by the R value calculated as: 
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where Sw and Sb are the within-class and between-class scatter matrices respectively and Sm is the 

mixture scatter matrix. 
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where m0 is the global mean vector. A high value of R represents a small within-class variance 

and a large between-class distance among the data points in the respective feature space [2]. The 

ranked features are sorted in descending order with respect to their R values. A sequential 

forward selection (sfs) technique is employed, selecting the first i features of the ranked feature 

set in each iteration (i = 2…26) and it is checked if the data from the training phase can be 

correctly clustered in a multi-dimensional feature space. This has been described in detail in the 

following section. 

 

4.2.2 Cluster formation on the training dataset 

 

The fundamental concept of cluster analysis is to form groups of similar objects as a means of 

distinguishing them from each other and can be applied in any discipline involving multivariate 

data. With a given dataset X = {xi}, i = 1,...,n to be clustered into a set of k clusters, the k-means 

algorithm iterates to minimize the squared error between the empirical mean of a cluster and the 

individual data points, defined as the cost function, J: 

 

2

1 1

( , )

n k

i j i j

i j

J u u x                                                                                   (6) 

   

where θj is the cluster center and uij = 1 if xi lies close to θj, or 0 if otherwise. Initially k centroids 

are defined and the data vectors are assigned to a cluster label depending on how close they are 

to each centroid. The k centroids are recalculated from the newly defined clusters and the process 
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of reassignment of each data vector to each new centroid is repeated. The algorithm iterates over 

this loop until the data vectors from the dataset X form clusters and the cost function J is 

minimized [5]. 

 

Here, as described the clusters are formed using data from the training set while the testing data 

is checked for its proximity to the formed clusters. Two explorations were made, details of which 

along with the data structure considered and the results obtained are mentioned here. 

 

1). Forming the clusters using the data from the first two days: 

 

Training - [PSAcid1_cabbage, PSSalt1_cabbage, PSAcid2_cabbage, PSSalt2_cabbage]  

 

and evaluating the proximity of the test data (Day 3 and 4) to the formed clusters: 

 

Test 1 - [PSAcid3_cabbage, PSSalt3_cabbage] and  

 

Test 2 - [PSAcid4_cabbage, PSSalt4_cabbage]. 

 

Here, the minimum distance classifier (based on Euclidean and the Mahalanobis distance) was 

used to determine the proximity of the test data collected on Day3 and Day 4 to the clusters 

formed on Day 1 and Day 2.  

 

 The cluster formation using k-means runs on the training dataset for each subject comprising 

of feature vectors (26 features) extracted from each post-stimulus signal. 

 The algorithm runs in conjunction with the sfs algorithm sequentially selecting a combination 

of 2 to 26 ranked features in each step (i). 

 A threshold of 25% of the expected number of data points is set for each of the two clusters 

formed (i.e. for Acid: 140 ± 35 and for Salt: 140 ± 35). This threshold value was 

experimentally selected since it produced the best results. If the number of data points in each 

cluster is within the threshold, it is considered as correctly clustered for that particular 

combination (i) of features selected (where i = 2...26). 

 The distance of the mean of the training dataset for each class label from the cluster centroids 

is computed and thereby each cluster is assigned with the class label that has its closest 

proximity to that particular class of the training dataset. 

 

A minimum distance classifier is used to compute the distance of the test dataset from the 

centroid of each cluster in a multi-dimensional feature space (considering the feature 

combination of the current step, i) based upon: a). Euclidean distance and b). Mahalanobis 

distance. The Mahalanobis distance is used to measure the distance of a point from a data 

distribution. The data distribution is characterized by the mean and the covariance matrix which 

defines the shape of how the data is distributed in the feature space and is generally hypothesized 

as a multivariate Gaussian distribution. Here, the Mahalanobis distance takes into consideration 

the covariance of the clusters along with their mean for the maximum likelihood estimation of 
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the covariance matrix and hence is effective for clusters with larger variance along one or many 

directions and in general having an ellipsoidal shape [2]. 

 

 The test dataset is assigned to a particular cluster depending on the minimum distance 

computed for each of the two measures (Euclidean or Mahalanobis). 

 The predicted label is verified with respect to the known annotations thereby ascertaining the 

accuracy of the prediction. 

 

The results are summarised in Table 8, for each plant species and both the distance measures. 

The features are selected based on the methodology described above. The results clearly show 

the effectiveness of the methodology over the classification technique used earlier with higher 

sensitivities for acid and salt detection.  

  
Distance 

Measure 

Plant 

Species 

Acid (%) Salt (%) Acid (%) Salt (%) 
Features 

Day 3 Day 4 

Euclidean 

Cabbage 
46.4 

 

95.7 

 

63.8 

 

79.7 

 

Mean, ZCR_haar_l1, ZCR_coif3_l1, 

ZCR_db3_l1 

Rosemery 
55.1 

 

95.7 

 

100.0 

 

73.9 

 

Mean, Skewness, ZCR_db3_l1, 

ZCR_coif3_l1, ZCR_haar_l1 

Sage 
78.3 

 

34.8 

 

21.7 

 

88.4 

 

Mean, ZCR_haar_l1, ZCR_coif3_l1, 

Skewness, ZCR_db3_l1, ZCR_haar_l3, 

ZCR_haar_l2, ZCR_coif3_l2, ZCR_coif3_l3, 

ZCR_db3_l3, ZCR_db3_l2, Std, 

Energy_db3_l1 

Mint 
65.2 

 

82.6 

 

81.2 

 

59.4 

 

ZCR_haar_l1, ZCR_db3_l1, ZCR_coif3_l1, 

ZCR_db3_l2, ZCR_haar_l2, ZCR_coif3_l3 

Mahalanobis 

Cabbage 
44.9 

 

94.2 

 

72.5 

 

85.5 

 

Mean, ZCR_haar_l1, ZCR_coif3_l1,  

ZCR_db3_l1, ZCR_haar_l2, ZCR_db3_l2, 

ZCR_haar_l3, ZCR_db3_l3, ZCR_coif3_l2, 

ZCR_coif3_l3 

Rosemery 
55.1 

 

94.2 

 

91.3 

 

71.0 

 

Mean, Skewness, ZCR_db3_l1 

Sage 
78.3 

 

49.3 

 

21.7 

 

87.0 

 

Mean, ZCR_haar_l1, ZCR_coif3_l1, 

skewness, ZCR_db3_l1, ZCR_haar_l3, 

ZCR_haar_l2, ZCR_coif3_l2, ZCR_coif3_l3, 

ZCR_db3_l3, ZCR_db3_l2, std, mean 

Mint 
62.3 

 

89.9 

 

88.4 

 

60.9 

 

ZCR_haar_l1, ZCR_db3_l1, ZCR_coif3_l1, 

ZCR_db3_l2, ZCR_haar_l2, ZCR_coif3_l3 

Table 8: Clustering results, where clusters are formed on Day 1 and Day 2 and prospectively evaluated on data from 

Day 3 and Day 4 using a Euclidean and Mahalanobis distance measure. 

 

However, the sensitivities achieved are not uniformly on the higher side for each plant species 

for both acid and salt detection over the two days (Day 3 and 4). Hence a new method was tried 

by considering three day’s data as training and evaluating the system to detect the presence of 

acid and salt on the data of Day 4. 

 

2). Forming the clusters using the data from Day 1, 2 and 3: 

 

[PSAcid1_cabbage, PSSalt1_cabbage, PSAcid2_cabbage, PSSalt2_cabbage, PSAcid3_cabbage, PSSalt3_cabbage]  

 

and evaluating the proximity of the test data (Day 4) to the formed clusters: 
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[PSAcid4_cabbage, PSSalt4_cabbage]. 

 

Similarly, a minimum distance classifier based on both the Euclidean and the Mahalanobis 

distance were used to determine the proximity of the test data collected on Day4 to the clusters 

formed by considering data of Day1, Day2 and Day3. The results for the prospective evaluation 

of Day 4 data are presented in Table 9. 

 
Distance 

Measure 

Plant 

Species 

Acid (%) Salt (%) Features 

Euclidean 

Cabbage 
98.6 

 

73.9 

 

Mean, ZCR_haar_l1, ZCR_coif3_l1, ZCR_db3_l1, 

ZCR_haar_l2, ZCR_db3_l2, ZCR_haar_l3, 

ZCR_db3_l3, ZCR_coif3_l2, ZCR_coif3_l3, Skewness, 

Energy_haar_l1, Energy_coif3_l1 

Rosemery 
100 

 

52.2 

 

Mean, Skewness, ZCR_db3_l1, ZCR_coif3_l1, 

ZCR_haar_l1, ZCR_coif3_l3, ZCR_coif3_l2, 

ZCR_haar_l3, ZCR_haar_l2, ZCR_db3_l3, 

ZCR_db3_l2 

Sage 0 0  

Mint 0 0  

Mahalanobis 

Cabbage 
95.7 

 

76.8 

 

Mean, ZCR_haar_l1, ZCR_coif3_l1, ZCR_db3_l1, 

ZCR_haar_l2, ZCR_db3_l2, ZCR_haar_l3, 

ZCR_db3_l3, ZCR_coif3_l2, ZCR_coif3_l3, Skewness, 

Energy_haar_l1, Energy_coif3_l1 

Rosemery 
100 

 

54 

 

 

Mean, Skewness, ZCR_db3_l1, ZCR_coif3_l1, 

ZCR_haar_l1, ZCR_coif3_l3, ZCR_coif3_l2, 

ZCR_haar_l3, ZCR_haar_l2 

Sage 0 0  

Mint 0 0  

Table 9: Clustering results, where clusters are formed on Day 1, Day 2 and Day 3 data and prospectively evaluated 

on data from Day 4 using a Euclidean and Mahalanobis distance measure. 
 

It clearly shows that although for cabbage and rosemery the results are better than the previous 

occasion, for the plant species sage and mint, the cluster formation itself was not successful. This 

indicates that the required number of data points could not be clustered together in the respective 

feature space and hence the fields in Table 9 for these two plants have been left vacant. 

However, from the last approach (cf. Table 8), detection of acid and salt stimuli for sage and 

mint were successful (although inconsistent in the sensitivity values), which implies that adding 

the third day’s data leads to some erroneous characteristics in the cluster formation. This is also 

testified by the fact that results in Table 8 show variations in the results of Day 3 and Day 4 

although the experimental conditions (concentration of stimulus, duration of experiments, etc.) 

were kept constant. This reflects on the variability inherent in the characteristic signals of a same 

plant species which is used for experiments on multiple occasions. 
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5 Conclusions and Future works 
 

In this exploration, there was a two-fold target – first, to see how different plant species react to 

external stimuli applied over multiple occasions and secondly once the background signal of a 

plant is separated from a post-stimulus signal, is it possible to discriminate between the applied 

stimuli. 

 

Throughout this exploration, each plant species was considered individually, primarily aimed at 

understanding their individual behaviours to external stimuli. Therefore as a first step, a few 

statistical tests like analysis of variance (ANOVA), Wilcoxon ranksum and t-test were performed 

and it was established that background signals of a plant could be clearly distinguished from 

post-stimulus signals. Once this was established, the next task was to discriminate the plant 

signals after the application of the stimulus (post-stimulus). The statistical tests and histogram 

plots of the features considered for the post-stimulus signals showed that the responses of all the 

four types of plants to either of the two stimuli were not distinguishable. Hence a pattern 

recognition based methodology was adopted to classify these two post-stimulus signals (as a 

result of acid and salt application) for each individual plant species. 

 

The results from the clustering based exploration were more promising than the linear decision 

boundary based classifiers, however the results reflected the variability inherent within the plant 

response to the same stimuli over multiple occasions. 

 

Hence as a future work, a rigorous experimental protocol involving different plants performed in 

a controlled environment is required to ensure minimum external variations. A large dataset from 

a group of plants could be studied using the techniques mentioned here considering individual 

plants. Once a successful recognition model is determined for each plant species which can 

recognise the application of different stimulus to the plants, this information can be clubbed 

together to formulate a global classifier which shares a common feature library and standardized 

classification methodology to distinguish external stimulus being applied to a network of plants.      
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